Copyright Notice

©2007 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

Portions of this article are derived from Chapter 8, "Beyond
Web Surfing — Content Services" published in the book,
Content Networking by Markus Hofmann and Lee Beaumont
(Morgan Kaufmann Publishers, 2005). All portions of the
article so derived are reprinted with permission of the
publisher. www.mkp.com

www.mkp.com

Editor: Jim Whitehead * ejw@soe.ucsc.edu

Open Pluggable Edge Services

An Architecture for Networked Content Services

Markus Hofmann ¢ Bell Labs/Alcatel-Lucent
Leland R. Beaumont ¢ Simply Quality

Standards

The IETF’s Open Pluggable Edge Services (OPES) working group focuses on rule-

based, in-line transformation services of data flows between two Internet

endpoints, such as Web servers and Web clients. The group has developed an

architectural framework to authorize, invoke, and trace such application-level

services. The framework follows a one-party consent model, which requires that

at least one of the application-layer endpoints explicitly authorize each service.

OPES services must also be reversible by request of the application endpoints.

ervice is personal. Every individual has his
s or her own interests and preferences. Just as

Dad might enjoy a cup of unflavored milk
in the morning, for example, his kids might pre-
fer chocolate and strawberry. Yet, every family
member has quick access to the plain milk,
stored locally in the fridge, and “adapts” it to
their individual preferences. Similarly, comput-
er users prefer to consume information in differ-
ent forms. For instance, a European traveler
might want to read New York’s current temper-
ature in the Celsius scale, whereas her American
friend is probably more comfortable with
Fahrenheit. Both individuals receive the same
information, but the content is processed and
presented differently.

With basic transport services becoming com-
modities and their revenue potential eroding, ISPs
are increasingly complementing their offers with
value-added services. The Internet’s open nature
facilitates the development of content networks.
Providers commonly deploy Web caches, for exam-
ple, to move and store content closer to the user,
thus reducing server load, improving access latency,
and decreasing network load. Web caches are
increasingly used to implement additional features
such as virus scanning, request filtering, and con-
tent adaptation. However, lack of standardized
mechanisms for tracing and controlling such inter-
mediaries causes problems with respect to failure
detection, data integrity, privacy, and security. To

JANUARY e FEBRUARY 2007

1089-7801/07/$25.00 © 2007 IEEE

address these problems, the IETF chartered the Open
Pluggable Edge Services (OPES) working group.

The Emergence of

Networked Content Services

As the functional components of content net-
works, networked content services handle process-
es such as creating, modifying, converting, and
filtering content or requests for it. Providers have
typically housed these services at centralized Web
servers, but newly defined elements known as call-
out servers let them place the services on compo-
nents within the networks. Powerful technical and
business forces are driving content networks’ evo-
lution beyond Web caching; moving content as
well as the services operating on it closer to the
user is a next logical step in the evolution of con-
tent networks.

Technical Drivers

Over the past few years, service providers have
used content-delivery techniques such as Web
caching and server replication to distribute con-
tent across networks. This allows for faster content
delivery and improves the Internet’s overall scal-
ability, but it assumes infrequently changing, stat-
ic content that provides the same combination of
text or images to each visitor. This assumption is
inconsistent with recent trends, as users increas-
ingly demand personalized Web experiences —
reading stories relevant to their personal interests

Published by the IEEE Computer Society

Standards

rather than a general mix of headlines
when visiting news sites, for example.
Such personalization requires addi-
tional processing and dynamic page
creation, typically performed at the
origin Web server. Consequently, the
origin server must receive and serve
individual user requests, thus eliminat-
ing the basic benefits of Web caching
and content distribution.

The next logical step is to distribute
services operating on, and creating,
personalized content. For example, to
get a local weather report while sitting
at your desk, you must typically type
in your current location by hand. A
content-delivery system can automate
this step if it knows your current loca-
tion, and it can customize the content
and display format if it knows your
preferences for using text, graphics,
audio, and video. If your preferred lan-
guage differs from the one in which the
weather site predominantly reports, the
question arises of which one the report
should use and how it should translate
the information. Perhaps an enhanced
service is available that provides more
accurate, up-to-date, or detailed infor-
mation. Have you subscribed to the
service, or can you pay for a single use
of it? If you request a local weather
report from your PDA while traveling
internationally, the service must recog-
nize that you are in a different geo-
graphic region, and it must adapt the
results to fit the PDA’s capabilities. The
architectures, protocols, and mecha-
nisms we discuss in this article are
aimed at bringing such services to the
network edge, close to the consumer.

Business Interests

Services generate revenue — the very
thing that business organizations rely
on for their continued success. An
open infrastructure for creating new
content services in cooperation with
the network provides attractive sepa-
rate and complementary opportunities
to content providers, network or serv-
ice providers, and content consumers.
The supporting architecture must allow

68

for quick, easy development and de-
ployment of new services to meet
users’ ever-evolving needs and expec-
tations. Furthermore, content services
make it possible to isolate content pro-
cessing and adaptation from content
delivery and storage — activities with
different optimization goals that
require different expertise.

OPES History
Various approaches for providing
value-added services on network inter-
mediaries emerged in the late 1990s —
most of them designed to serve specif-
ic purposes. Solutions such as the
Internet Content Adaptation Protocol
(ICAP; www.i-cap.org) were open, but
as vendors began implementing pro-
prietary mechanisms, interoperability
became a real problem. The need was
clear for a standardized, open, and
extensible services architecture that
would let intermediaries provide serv-
ices for mediating, modifying, and
monitoring application messages.
Network service providers such as
Akamai and AT&T recognized the
increased flexibility and scalability that
would come from separating content
applications from specialized Web-
caching devices. A standards-based
interface would let them choose best-of-
breed applications and infrastructures.
Application providers such as Trend
Micro and Symantec use open interfaces
to let their network-based applications
communicate with the latest caching
and content-delivery systems. It pro-
vides them the necessary hooks into the
network without the need for formal
partnerships with caching and network
equipment vendors. Infrastructure ven-
dors such as Lucent, Nortel, Intel, IBM,
Network Appliance, CacheFlow, and
CacheWare were interested in open
interoperability not only to meet their
customers’ needs but also to get into
previously closed market segments.
These parties all believed that working
together would accelerate the availabil-
ity of solutions and clarify the problems
that must be addressed.

www.computer.org/internet/

A small group of people from Intel,
Novell, Lucent, and CacheFlow headed
a so-called “birds of a feather” (BoF)
session in December 2000 at the 49th
IETF meeting. The OPES BoF aimed to
form an IETF working group to develop
the protocols and mechanisms for an
open content services architecture. The
meeting started a long, controversial,
and heated discussion in the IETF com-
munity that was less about technical
details than about the Internet’s funda-
mental design principles and how the
proposed architecture would affect
them. The discussion focused attention
on several architectural and policy
issues about robustness and end-to-
end data integrity — both long cited as
the Internet architecture’s overriding
goals' — which an architecture that
allowed elements inside the network to
modify messages could potentially
erode. For example, critics feared that
at some future point an OPES service
would perform inappropriately (a virus
scanner might reject content that didn’t
include a virus) or an OPES element
could be compromised inadvertently or
with malicious intent. The discussion
was helpful in identifying potential
threats and focusing the proposed
OPES work, although it sometimes
degenerated into a very ideological and
dogmatic argument. As a result, it took
three more BoFs and a series of inter-
mediate workshops before the OPES
working group was finally chartered
in February 2002 (www.ietf.org/html.
charters/opes-charter.html).

Given the high stakes at play, the
Internet Architecture Board (IAB) took
the unusual step of issuing RFC 3238,
which included comments and recom-
mendations on the architectural and
policy issues related to chartering the
OPES working group.? Although it
doesn’t recommend specific solutions
or mandate specific functional require-
ments, the RFC brings to the fore issues
on integrity, privacy, and security that
any OPES solution standardized in the
IETF must address — either by demon-
strating appropriate mechanisms or

IEEE INTERNET COMPUTING

making a convincing case that no con-
cerns exist. The working group res-
ponded by producing RFC 3914, which
describes how OPES solutions address
those considerations.’

By mid-2002, the OPES working
group finished its initial charter and
put forward a general architecture for
networked content services, as well as
a comprehensive specification for a
next-generation call-out protocol
framework. The first specific profile for
an OPES protocol was for HTTP-based
services.* After completing that effort,
the working group started on a profile
for SMTP-based services. At the time of
this writing, however, the OPES work-
ing group is in the process of wrapping
up due to a lack of active participation.
Stagnation in content-edge services
deployment and the competitive land-
scape’s thinning after the dot-com
downturn lessened the interest in a
generalized open solution such as
OPES. With only a few deployed serv-
ices and just a handful of providers and
vendors left, specialized point solutions
seem economically feasible, for now.

Nonetheless, the working group’s
documents introduce an architectural
framework and a set of requirements to
guide standardization of needed proto-
cols and interfaces. The current goal is
to finalize the initial work around
SMTP to lay the foundation for possi-
ble individual contributions later on.

The OPES Architecture
The OPES architecture defines a frame-
work for distributing, authorizing, and
invoking networked services at the
application level that both offloads
origin servers and improves the user
experience.®> Although focused mainly
on HTTP-based applications, the archi-
tecture is designed to enable support
for other applications such as email or
multimedia streaming, as well.

OPES as an

Evolution of Web Caching
Enhancing Web caches to run addi-
tional services, such as filtering Web

JANUARY e FEBRUARY 2007

Open Pluggable Edge Services

HTTP
server

Callout '

server with
content
adaptation

=

Global
network

Figure |. Content-adaptation service. A services-aware Web cache vectors client
requests, server responses, or cached content to callout servers, where it is

adapted to meet user preferences.

messages, is a first step toward distrib-
uting services that transform or create
content. Yet, Web caches are typically
specialized devices that are highly
tuned for efficient, high-performance
file storage and Web retrieval. Running
other processing-intensive services on
the same network components is like-
ly to degrade cache performance. A
better approach is to provide services
such as virus scanning and multimedia
content transformation on separate
elements. To that end, the OPES archi-
tecture introduces an open standard
interface to callout servers, which Web
caches or proxies can use when serv-
ices are needed. The callout server can
be collocated with the callout proxy, or
it can be located across the network
from it. OPES also allows services to be
executed locally on the Web cache or
proxy. Callout servers can be added to
the network as the need for their par-
ticular services is recognized and they
become available.

The example content-adaptation
service in Figure 1 illustrates how this
architecture works to present the same
information to two users with different
client devices. A content consumer
requests a Web page via a PC-based
client (1). The request is routed to a
cache in the network, which requests
the page from an HTTP content server
(2), stores it, and forwards a copy to the
client (3). When a PDA user later
requests the same page, the request
goes to the Web cache (4), which
already has the page stored. Recogniz-
ing the need to adapt the page for the
client, the cache sends the content to a
callout server (5), which returns a ver-
sion adapted for PDA display (6). The
cache then forwards the adapted page
to the PDA-based client (7). Here, the
entire request is completed locally
without accessing the origin server
across the network. This reduces server
load, network load, and response time.
It’s like adding chocolate syrup to the

69

Standards

OPES processor Callout
server A
OPES OPES
service application service
A L
] application
l , AT Callout
o l: server B
Data dispatcher \
* OPES rule set ' OPES
* Security & trust policy oce service
* Tracing A application
A A ; A
li l / /" Adapted l:
! "7/ OCP messages :
Application HTTP OCP -] > OCP
protocol (for example) Orriginal
messages OCP messages
< TCP/IP
e -] > L .
Client Application
(data consumer) protocol
messages

Origin server
(data producer)

Figure 2. The Open Pluggable Edge Services (OPES) architecture. The data
dispatcher within the OPES processor vectors messages to the OPES service

application, which may be collocated or
the OPES Callout Protocol (OCP).

milk from the refrigerator, rather than
going back to the store for chocolate
milk (or searching for a chocolate cow).
These savings become more important
as the number of client device types to
be served increases. Finally, the Web
cache has the option of whether to
store the adapted page, representing a
typical trade-off between space and
processing time.

Authorization and Trust
Although the OPES architecture pro-
vides many exciting opportunities and
promises benefits to content con-
sumers and providers alike, it also has
the potential for misuse. Concerns cen-
ter on the possibility of intercepting
message flows between content con-
sumers and providers without their
knowledge. Intercepting a message
flow for executing services can cause
problems similar to those that occur
with interception proxies. Consumers
and providers can quickly lose trust in
networks that modify content without
either endpoint being aware of it.

To address the issue, OPES follows

70

reached in a separate callout server via

a one-party consent model that
requires each content service to be
authorized by either the content
provider or the content consumer. Sur-
rogate services are content services,
such as watermarking, content adap-
tation, or dynamic Web page assembly,
provided on the origin server’s behalf.
The elements that make up the servic-
es form a surrogate overlay and are
logically part of their respective origin
servers’ authoritative domains. Simi-
larly, delegate services are those pro-
vided on content consumers’ behalf or
by the applications they’re running —
virus scanning or content filtering, for
example. The elements that make up
the delegate services form a delegate
overlay and are logically part of the
content-consumer applications’ autho-
ritative domains.

The content provider or consumer
must securely delegate and transmit
policy information, describing what
types of services are authorized for
various transaction types, from the
authorizing party to the data dispatch-
er’s policy-enforcement function.

www.computer.org/internet/

Architectural Elements

Figure 2 illustrates the various archi-
tectural elements and their interac-
tions, as described in RFC 3835. The
OPES processor is an application-level
intermediary on the path between data
consumer (a Web client, for example)
and data producer (such as a Web serv-
er or origin server). The OPES proces-
sor analyzes incoming application
messages and invokes the appropriate
applications. Integral to every OPES
processor is the data dispatcher, which
is the specific component responsible
for this message analysis and applica-
tion invocation. The data dispatcher
bases its decisions on a rule set that
specifies what applications to invoke
on which messages and how. For
example, a rule might specify that the
services application must scan all
binary HTTP response messages for
viruses before forwarding them to user
Markus. The OPES processor can use a
function sometimes called message
vectoring to hand messages off for fur-
ther processing by OPES service appli-
cations, which can reside on the OPES
processor itself or on remote callout
servers. A single OPES processor can
communicate with multiple callout
servers (indicated by A and B in the
figure), just as a single callout server
can receive requests from multiple
OPES processors. The OPES Callout
Protocol (OCP) governs communica-
tion between OPES processors and
callout servers.

The architecture isn’t limited to a
single OPES processor between the
consumer and producer. Indeed, a
message might traverse multiple OPES
processors on its way between two
endpoints. OPES requires, however,
that the first OPES processor in such a
chain be explicitly addressed at the IP
layer. As a first step toward controlla-
bility, this policy prohibits deploying
OPES processors as interception prox-
ies and thus ensures that the originat-
ing endpoint is always aware of the
first OPES processor its message trav-
els through.

IEEE INTERNET COMPUTING

Controllability, Integrity,

and Security Considerations

The working group focused heavily on
features intended to allow only auth-
orized content transformation. The
intent is to ensure that endpoints are
aware and in control of the services
performed inside the network.

In an OPES system, each message
flow must follow policies established by
the data consumer or the data producer,
identifying what parties are authorized
to perform what services. (The system is
responsible for implementing a mecha-
nism to resolve possible conflicts.) The
endpoints communicate their policies to
their immediate, trusted service pro-
viders, thus delegating authority and
letting the providers act on the end-
points’ behalf, according to the policies
set forth. For example, a residential cus-
tomer might authorize a DSL service
provider to perform virus scanning on
all binary downloads. The service
provider could configure the network
elements accordingly by activating the
appropriate rules on its OPES proces-
sors. Authority delegation can move to
more distant entities in a stepwise fash-
ion, such that entity A delegates to enti-
ty B, entity B delegates to entity C, and
so forth.

User-authorized policies typically
extend to include encryption require-
ments on the various network links,
including possible communication with
callout servers. Callout servers must
not violate trust policies by transmit-
ting information to servers or processes
outside the trust domain. Throughout
each OPES flow, the callout servers
must protect customer data identified
as private. They must thus be able to
announce their privacy capabilities and
ability to enforce privacy policies. To
allow operational verification, the
OPES architecture requires each OPES
system to provide tracing functions.
Coupled with strong end-to-end in-
tegrity checks such as digital signature
techniques, this ensures that control
over the services provided in the net-
work remains with the endpoints.

JANUARY e FEBRUARY 2007

Open Pluggable Edge Services

HTTP
profile

RTP
profile

FTP
profile

SMTP
profile

MIME

profile Application protocol profiles

Application-protocol agnostic

TCP/IP

Other
transports

Figure 3. The OPES Callout Protocol architecture. Application-specific protocol
profiles augment the protocol-agnostic OCP core.

The OPES

Callout Protocol

OCP is currently a proposed IETF stan-
dard that indicates the design phase’s
completion. The protocol details are
subject to possible modifications until
they prove valid in practice after
wider deployment. As such, we don’t
attempt a detailed description or
definitive reference to the protocol.
Instead, this article provides an over-
view of OCP’s workings and some of
its features; for more details, refer to
RFCs 3836 and 4037.%7

The protocol-specification process
began by identifying and describing
the functional, performance, and secu-
rity requirements the protocol needed
to meet.® The working group used this
as a basis for selecting between alter-
nate design choices.

The protocol’s primary purpose and
value is to enable OPES processors to
forward application messages to call-
out servers for processing by OPES
services. OCP then lets the callout
servers return the results to the proces-
sors — possibly including modified
messages. Although the working group
initially focused on supporting the
exchange of HTTP messages, it soon
shifted to specifying a generic, ap-
plication-agnostic protocol core
supplemented by application-specific
protocol profiles. The protocol core
makes no assumptions about the appli-
cation-layer protocol used in the path
between the data producer and the
data consumer, which means that fea-
tures commonly needed for all appli-
cation protocols can be implemented

just once in the protocol core.
Providers will develop features specif-
ic to each application protocol in sep-
arate protocol profiles.

Figure 3 shows the OCP architec-
ture. The OCP core implements appli-
cation-agnostic features to support
various application protocols.” We
assume that OCP runs on top of a
reliable transport protocol such as
TCP. In particular, it relies on the
underlying protocol to maintain
packet ordering and provide conges-
tion-control mechanisms in confor-
mance with RFC 2914.%2 OCP doesn’t
require separate transport connec-
tions for each callout transaction.
Instead, it allows multiple transac-
tions over established connections,
much as HTTP/1.1 uses persistent
connections. OCP even allows trans-
actions on a single connection to
overlap. The OCP core is augmented
by protocol profiles that are specific
to the application protocol used
between the content consumer and
producer. The working group wrote
RFC 4236 to provide a profile speci-
fication for HTTP-based applications
to allow transmission of Web mes-
sages and fragments between OPES
processors and callout servers.’

OCP offers several novel and use-
ful features:

e Asynchronous message exchange
allows multiple outstanding callout
requests on a single transport con-
nection and provides a method to
correlate callout responses to call-
out requests.

71

Standards

OPES processor

Transport connection (TCP/IP)

Callout server

Connection start (CS)

\ 4

Start monitoring connection state

Start monitoring transaction state

Start processing the

Initialization Negotiation offer (NO) N
______ Negotiation response (NR) _____]
Orriginal
data flow Transaction start (TS)
Application message start (AMS)
Sending

application data

Data use mine (DUM)

application message

Application message end (AME)

Receive application data

Perform requested content services

Begin adapted data flow

Send adapted application data

End application message processing

Start processing

the application message

Receive application data

Perform requested content services

Begin adapted data flow

Send adapted application data

. AMS
. DUM
Receiving adapted | _ AME
application data |
AMS .
Sending DUM R
application data e
AME .
B AMS
. DUM
Receiving adapted : AME
application data [~
End OCP Transaction end (TE)

End application message processing

End OCP transaction

transaction

Figure 4. Example OPES Callout Protocol session. An OPES processor requests
services from a callout server using an OCP session.

e Message segmentation lets the
OPES processor forward an appli-
cation message to a callout server
in a series of smaller message frag-
ments and provides a method to
reassemble the fragments into the
original message.

o Keep-alive mechanism lets each
endpoint detect if the other has
failed — even in the absence of
callout transactions.

e (Capability and parameter negotia-
tions provide support for OPES
processors and callout servers to
negotiate capabilities and callout
connection parameters, including
callout protocol version, fail-over
behavior, heartbeat rate for keep-
alive messages, and security.

e Metadata mechanism lets callout-
transaction endpoints include
instructions for the OPES processor
and callout server in callout re-

72

quests and responses. For example,
the processor can include an
ordered list of services to be per-
formed on forwarded application
messages, as well as instructions
for tracing and keeping local copies
of the application messages.

Premature termination allows a
callout server to abort an ongoing
transaction at any time. This is
helpful for situations in which the
callout server determines that no
further actions are required and
that transmitting the remaining
parts of the application message is
unnecessary. Virus scanners, for
example, can use this feature to
stop data transmission after detect-
ing that the transmitted application
message is a text file and, therefore,
not in need of virus scanning. This
feature is similar to message pre-
view defined in ICAP, but offers

www.computer.org/internet/

more flexibility and a more fine-
grained control over when to ter-
minate a transaction.

Details on these features and on how
they're used are available in the proto-
col specifications.”?

Figure 4 illustrates an example OCP
session, which begins when the OPES
processor establishes a transport con-
nection with the callout server
(typically using TCP) and sends a con-
nection start (CS) message to request
that the callout server begin monitor-
ing the connection state. The OPES
processor then makes a negotiation
offer (NO). Requiring one of the parties
to initiate the negotiation process
avoids possible deadlocks, such as both
sides waiting for the other to make an
offer. The negotiation mechanism lets
the processor and callout server agree
on a mutually acceptable set of fea-
tures, including optional and applica-
tion-specific behaviors, as well as OCP
extensions. For example, they could
negotiate transport encryption, data
format, and support for new messages.
The initialization portion of the session
ends when the other party sends a
negotiation response (NR).

A transaction start (TS) message
begins the original data flow, at which
point the callout server begins moni-
toring the transaction state. An appli-
cation message start (AMS) then
notifies the callout processor to begin
processing the application message.
The OPES processor sends the applica-
tion data as the payload portion of
one or more data-use-mine (DUM)
messages and indicates the application
message’s completion with an appli-
cation message end (AME). The call-
out processor receives the application
data and performs the requested con-
tent services. It then begins the adapt-
ed data flow with an AMS, followed
by one or more DUM messages,
including the adapted application
data. The callout server sends an AME
message to inform the OPES processor
that application message processing is

IEEE INTERNET COMPUTING

complete and it will send no further
data for the corresponding message.
The server can adapt any number of
application messages in a single ses-
sion, indicating each by the second
series of AMS, DUM, AME, AMS,
DUM, and AME messages.

Although this example doesn’t
illustrate the process, the callout serv-
er can also initiate a session with an
AMS message. OPES allows the parties
to send messages asynchronously as
well as overlap requests and respons-
es. Finally, either side can send a trans-
action end (TE) message to end the
OCP transaction.

hen work on OPES began during

the heyday of the dot-com boom,
considerable enthusiasm existed
around value-added services for en-
hanced Web-content delivery. Many
small start-ups were pushing into the
market, typically focusing on specific
problem areas and relying on inter-
working with others to provide com-
prehensive end-to-end solutions. For
example, some companies specialized
in content filtering and transformation
services. Because they didn’t own and
operate the network infrastructure,
these providers needed standardized
methods to connect their services with
existing networks. They also wanted to
be able to develop and reuse their
services in various application envi-
ronments — to implement and deploy
a generic virus-scanning service once
and use it for HTTP downloads, email,
and instant messaging, for example. In
this environment, a strong desire exist-
ed for a generalized, flexible, and open
framework into which such services
could fit.

When the dot-com bubble burst,
most of the smaller companies disap-
peared, and standards-based interop-
erability was no longer the focus. Big
players naturally have less interest in
enabling interoperability because they
can often charge more for vendor-
specific solutions. In addition, deploy-

JANUARY e FEBRUARY 2007

Open Pluggable Edge Services

ment of content services stagnated.
With only a few popular services
being deployed, specialized point
solutions are still economically feasi-
ble; no real incentive exists to adopt a
more complex generalized framework
unless the variety of services increas-
es and separate point solutions
becomes too costly. Practitioners also
appear not to see a need for some of
OPES’s advanced features, such as
tracing or bypass. Although important
from an architectural perspective,
these features don’t seem to provide
enough immediate practical value to
spur wide adoption.

Consequently, very few known
OPES implementations exist. Instead,
providers continue to use application-
specific point solutions such as ICAP
for HTTP-based applications. Only after
a larger number of applications with
more sophisticated features is deployed
will the benefits of a generalized
framework such as OPES provide
incentives for practitioners to adopt it.

As of this writing, the OPES work-
ing group has produced 10 RFCs, dis-
cussing use cases and a threat analysis,
describing the generalized OPES archi-
tecture, and specifying a generic pro-
tocol core and a specific HTTP profile.
An Internet draft on integrity, privacy,
and security in OPES for SMTP is
under “working group last call” status
to lay a foundation for future individ-
ual submissions on SMTP or other
application areas. i€}

Acknowledgments

Portions of this article are derived from Chapter
8, “Beyond Web Surfing — Content Services,”
published in our book, Content Networking
(Morgan Kaufmann, 2005). All such portions are
reprinted with the publisher’s permission
(www.mkp.com).

References
1. J.H. Saltzer, D.P. Reed, and D.D. Clark, “End-
to-End Arguments in System Design,” ACM
Trans. Comm., vol. 2, no. 4, 1984.
2. S. Floyd and L. Daigle, “IAB Architectural
and Policy Considerations for Open Plug-

gable Edge Services,” IETF RFC 3238, Jan.
2002; www.ietf.org/rfc/rfc3238.txt.

3. A. Barbir and A. Rousskov, “Open Pluggable
Edge Services (OPES) Treatment of IAB Con-
siderations,” IETF RFC 3914, Oct. 2004;
www.ietf.org/rfc/rfc3914.txt.

4. A. Rousskov and M. Stecher, “HTTP Adap-
tation with Open Pluggable Edge Services
(OPES),” IETF RFC 4236, Nov. 2005; www.
ietf.org/rfc/rfc4236.txt.

5. A. Barbir et al., “An Architecture for Open
Pluggable Edge Services (OPES),” IETF RFC
3835, Aug. 2004; www.ietf.org/rfc/rfc3835.txt.

6. A. Beck et al., “Requirements for Open Plug-
gable Edge Services (OPES) Callout Proto-
cols,” IETF RFC 3836, Aug. 2004; www.
ietf.org/rfc/rfc3836.txt.

7. A.Rousskov, “Open Pluggable Edge Services
(OPES) Callout Protocol (OCP) Core,” IETF
RFC 4037, Mar. 2005; www.ietf.org/rfc/rfc
4037 .txt.

8. S. Floyd, “Congestion Control Principles,”
IETF RFC 2019, Sept. 2000; www.ietf.org/
rfc/rfc2914.txt.

9. A. Rousskov and M. Stecher, “HTTP Adap-
tation with Open Pluggable Edge Services
(OPES),” IETF RFC 4236, Nov. 2005; www.
ietf.org/rfc/rfc4236.txt

Markus Hofmann is director of multimedia net-
working research at Bell Labs/Alcatel-
Lucent. His research interests include

next-generation content-networking solu-

tions, multicast technologies, and network
architectures and protocols for converged
voice, data, and IPTV services, including sig-

naling and services control. Hofmann has a

PhD in computer engineering from the Uni-

versity of Karlsruhe, Germany. He is cochair

of the IETF OPES working group and coau-
thor of Content Networking: Architecture,

Protocols, and Practice (Morgan Kaufmann,

2005). Contact him at www.mhof.com.

Leland R. Beaumont is the principal at Simply
Quality. His research interests include new
product development, quality management,
and content networking. Beaumont has an
MS in electrical engineering from Purdue
University. He is coauthor of Content Net-
working: Architecture, Protocols, and Prac-
tice (Morgan Kaufmann, 2005). Contact him
at lee@simplyquality.org.

73

